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Wetting on a cylindrical substrate off coexistence 
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Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, IJK 

Received 12 July 1990, in final form 23 August 1990 

Abstract. We calculate a Landau mean-field phase diagram for the wetting tran- 
sition on a cylindrical substrate as a function of the distance from coexistence. Al- 
though both the bulk field and the curvature cause the wetting layer to remain finite, 
they affect the wetting phase diagram in different ways. 

Theoretical studies of wetting have concentrated on the growth of wetting layers upon 
planar substrates [l-51. Lately, increasing attention has been devoted to curved sub- 
strates, particularly of cylindrical or spherical geometries [3-111, which are of both 
fundamental and practical interest, in such diverse applications as textile fibres, dye- 
ing, lubricants, ink products, carbon fibres and oil recovery. 

Recently a mean-field phase diagram was calculated for wetting on cylindrical sub- 
strates using a Landau-type continuum theory with short-range substrate-adsorbate 
forces [10,11]. This study was restricted to coexistence. In this paper we extend this 
work by presenting results for wetting off-coexistence, on cylindrical substrates. 

Typically a true wetting transition occurs for a semi-infinite two-phase fluid, say 
liquid/gas, bounded by a planar substrate. In such a system nothing prevents the 
liquid phase, which is favoured by the wall, from proliferating into the bulk. If, 
however, the  adsorbate is not at two-phase coexistence then the wetting layer thickness 
remains finite. One speaks of a prewetting transition between a thin and a thick layer. 
The  wetting transition on a cylinder could be argued to resemble the prewetting 
transition on a flat surface. An interface bound to a cylindrical or spherical substrate 
cannot expand to infinity, since the increase in its area would result in an unlimited 
positive contribution to the free energy. 

We find tha t ,  although both a bulk field and curvature restrict the wetting layer 
t o  a finite thickness, they affect the wetting phase diagram in different ways. The  
re-entrant wetting transition found for substrates of curvature large compared to  the 
correlation length [lo] is quickly destroyed by the application of a bulk field. 

Our starting point is the Landau free-energy functzonal 

of the order parameter m(.). c is a constant. The  first integral is taken over the 
volume containing the fluid and the second is taken over the interface of the fluid with 
the substrate. The  bulk free energy density f ( m )  is taken as usual to be 

f ( m )  = uo - hm + u2m2 + a4m4 ( 2 )  
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where h is the bulk field. We make the choice of a bulk field disadvantaging the 
phase of positive m ( r ) ,  h 5 0 .  It is convenient to choose aq = 1, n2 = 2(T - T,) 
and a,(T,h)  such that min{f(m)} = 0. This amounts to subtracting the bulk free 
energy from the total free energy so that F[m] is the interfacial free energy. The first 
integral in ( I ) ,  say Fd[m], is the contribution coming from the distortion i n  the profile 
m( r )  due to  the presence of the interface. The second integral, say Fs[ms] ,  is the 
contribution coming from the direct contact with the substrate. The standard choice 
for the substrate-adsorbate surface free energy is 

(3) 2 -l,(m,) = -hsms - $gsms 

where h,  is a surface field and g ,  a surface coupling enhancement. 
I t  is convenient to  write f (m)  in the form 

f (m)  = (m2 - mi)' - h m  + 6 ,  

f ( m )  = (m2 + mi)' - hm + 6, 

T 5 T, 

T 2 T, 
(4) 

where m; = (T - T,I and again 6, is chosen such that min{f(m)} = 0. 

scaled variables 
The substrate we consider is a cylinder of radius r1 and length L .  Introducing the 

the scaled free energy per unit area of the substrate is 

where 

and 

rS(xs) = -Hsxs - iGsx: .  (8) 

In terms of the scaled variables the bulk free energy density becomes 

2 f(x) = $R(z2 - 1) - Hx + A ,  

f (z )  = $R(x2 + 1)2 - Hx + A ,  

T < T, 

T > T, 
(9) 

where A,  is chosen such that min{f(z)} = 0. We have introduced the scaled fields 



Wetting on a cylindrical substrate off coexistence 5657 

8.00 r 

c 

4 00-  

t 

vs 1 

OL 

-4.00 - 

-8.OOC // 

-400 -200 0 2 00 4 00 
xs 

Figure 1. Curves ys (zs) of boundary conditions on a cylindrical substrate for T < Tc 

The points of intersection of a given curve y, (zs) with the straight line ys = Hs+Gsx,  
correspond to the profiles extremizing the free energy T[z]. 

and ( a )  R = 1 , H  = 0; ( b )  R = l , H  = -2;  ( c )  R = 16 ,H  = 0; ( d )  R = 16 ,H  = -2 .  

and defined the important dimensionless parameter 

which compares the cylinder radius to the bulk correlation length [ = &/2(IT - 
T, I) ‘1’. 

Minimizing the scaled surface free energy (6) leads to the Euler-Lagrange equation 

d2x 1 d x  - + -- = f’(x) 
dP2 P d P  

together with the boundary conditions 

e/ = -H,  - G,x, 
dP s 

and 

x + x  bo as p - 0 0  

where x, is the global minimum of f ( x )  given by the minimum root of 
x 3 - x - ( H / S Z ) = O  T < T ,  

x3 + x - (H/R) = 0 T > T, 
which corresponds to  the stable value of the mean-field magnetization. 

solution. We will therefore resort to numerical integration. Letting y E -dx/dp 
we can rewrite (14) as a system of two equations 

The apparently simple nonlinear differential equation (14) defies an analytical 
-x 

x = -y y = -y/p - f’(x). (17) 
For a given value of x, we integrate this system once, requiring that the trajectory y(z) 
in the phase plane ( x , y )  passes through (x,,O), in accordance with (16). Repeating 
this process for a given set of x, values, we obtain a curve in the (xs,ys) plane. 
Examples of the curve y,(x,) are shown in figure 1 for different values of s1 and H .  
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The  profiles t ha t  extremize the free energy correspond to the points of intersection 
of the curve of boundary conditions y,(z,) with the straight line yB(xs) = H ,  + Gsz,. 
Depending on the values of the ratio H/R, which affects the shape of y,(z,), and of H ,  
and G,, which affect the position of the straight line, there can either be one or three 
points of intersection. If the curve y,(z,) and the straight line H,+G,z, intersect only 
once then any change in the profile must be continuous. If they intersect three times 
then the transition involves a jump  between two distinct profiles when they exchange 
roles as the global minimum of the free energy; this is clearly a first-order transition. 
An equal -a rea  rule enables us to study graphically the latter type of transition; it 
also tells us tha t  the  intersection in the middle corresponds to a maximum of the free 
energy which can be discarded. 

The  equal-area rule follows from considering the surface free energy functional 
r[c] for profiles satisfying the bulk equation and the boundary condition (16), as 
a function of z,,-say f ( z s )  = ?,,(I,) + rs(zs),  which is to be compared with (6). 
Requiring tha t  dI’(z,)/dz, = 0,  and using the boundary condition at the substrate, 
(15), we see tha t  dF,(z,)/dz, and y,(z,) are identical functions of 2,. This implies 

WI - Wl = fiYs(zs,  - ( H ,  + GS.,)Id% (18) 

Drawing the straight line ys = H, + G S x ,  across the curve y,(z,), it follows tha t  a 
first-order transition occurs when the two enclosed areas become equal. 

Our aim is t o  calculate the phase boundary which separates the two phase region, 
where there is a discontinuous transition between a thin and a thick wetting layer, 
from the one phase region, where the change in the profile is continuous. If the value 
of G, exceeds the value of the slope of the curve y,(z,) at its point of minimum slope, 
tha t  is its point of inflexion, then the line y,(z,) = H ,  +G,z, will cut equal areas from 
the  curve y,(z,) for some H, and a first-order transition will occur. Hence the phase 
boundary follows from a determination of the minimum slope of y,(z,). 

We now present phase diagrams for wetting on a cylindrical substrate off coexis- 
tence. We shall also display results for the wetting of a planar substrate off coexistence 
as we are interested in comparing the effects of curvature and a bulk field, both of 
which limit the thickness of the wetting layer. In figure 2 we show the most direct 
comparison to the results Indekeu e l  af [lo] obtained for the zero field case. The  phase 
boundary is plotted in the variables = r l / <  versus G, for different values of the 
ratio / ~ ( r ~ / , , h ) ~ .  In the case H = 0. for a fixed small positive coupling enhancement 
G,, the first-order transition appears, disappears and reappears. As H is increased 
the most striking feature is tha t  the re-entrance is destroyed very quickly, i.e. by 
h(r1/&)3 = -0.01. 

In figure 3,  for comparison, we plot l /< versus G, = g/c for a planar substrate in 
a bulk field [1,2,12-141, h/c3/ ’  = -1. The  bulk field d o e s  not introduce re-entrance. 
Note tha t  the variables used in figure 3 are not the obvious scaling variables for the 
mean field theory of wetting on a planar substrate in a field. For a planar substrate, 
in zero bulk field, the phase boundary is made up of two straight segments [ I l l ,  which 
pass through the origin of the (G,, l/<) plane, one for T < T,, of slope -1/fi, and 
one for T > T,, of slope 1 . For h # 0 the phase boundary retains this shape only if 
the ratio H/R is kept constant, as can be shown analytically. Keeping H/R constant 
implies tha t  h - IT - T,13/2 - l / t 3 .  Therefore one is led to introduce a scaling factor 
A E lhl-1/3 and plot a phase diagram using the variables XG, and A/< [15]. The  phase 



Wetting on a cylindrical substrate off coexistence 5659 

phase region 

5.001 1 1 I 
-5.00 -2.50 0.00 2.50 5.00 

Gs 
Figure 2. Phase diagram for wetting on a cylindrical substrate. For T < Tc, the 
correlation length E is denoted by E - ,  and for T > Tc, by (+. The critical line 
separates the one-phase region from the two-phase region for ( a )  h = 0 and for fixed 
values of h , r l  and c satisfying ( b )  h ( r ~ / f i ) ~  = -0.1, ( c )  h ( r ~ / & ) ~  = -1; note that 
H = ( 2 h / ~ ~ i ) ( 7 - ~  ~ 1 3 .  
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Figure 3. Phase diagram for wetting on a planar substrate in a field. This diagram 
is valid for fixed values of h and c such that f ~ / ( f i ) ~  = -1; H varies according to 
H = ( ' 2 /~ /&) ( l /&)~ .  Note that as Q'lZ = I/[ -+ 03, H -+ 0 and the slope of the 
phase boundary tends toward -I/& for T < T, and 1 for T > Tc . 

boundary is now explicitly independent of h. Provided that we fix c = 1 the resulting 
graph is identical to  that in figure 3 for all h < 0. 

Our results show that although bulk field and curvature both suppress an infinite 
wetting layer they affect the wetting phase diagram in different ways. A re-entrant two- 
phase region in the (r1/F,G,)  space seems peculiar to wetting on a curved substrate 
very close to coexistence. Whether this is an artefact of the mean field approximation 
used [16] or has deeper physical significance remains an open question. 

We should also expect the nature of the phase transition to  be different in the case 
of curvature and a bulk field. In the former case the interface is of finite size and hence 
the first-order transitions will be rounded and the critical line will show a finite-size 
shift and rounding. This effect has been discussed by Upton et al. They argue that the 
transition is not destroyed by finite-size rounding but a full theory of the effect has not 
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yet been presented. The prewetting critical point on a planar substrate is, however, 
known to be a sharp phase transition in the two-dimensional Ising universality class 

This study of wetting on curved substrates off coexistence was partly motivated by 
the experimental situation. Experiments on the adsorption of 4He films on the surface 
of graphite fibers have been reported [18]. Several experiments on the stability of 
silica microspheres immersed in an homogeneous two-component fluid have also been 
conducted recently [19,20]. Gurfein et a1 [19] observed a reversible flocculation as a 
function of temperature near the coexistence curve. They argued that this could be 
caused either by a pure surface transition, that  is prewetting, or by capillary conden- 
sation [21]. The theory presented here may be able to  shed some light on the origin 
of the flocculation curve. This work is in progress and will be reported elsewhere. 

P, 171. 
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